Mock Exam Analysis on Manifolds

March, 2015

Assignment 1. (20 pt.)
We consider smooth differential forms on \mathbb{R}^{3}.

1. Prove that the one-form $\sigma=y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z$ is exact, and determine a function f such that $\sigma=\mathrm{df}$.
2. Prove that the 3 -form

$$
\begin{equation*}
\omega=x y z d x \wedge d y \wedge d z \tag{1}
\end{equation*}
$$

on \mathbb{R}^{3} is exact, and determine a two-form η on \mathbb{R}^{3} such that $\omega=d \eta$.
3. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the transformation to cylindrical coordinates given by

$$
\phi(r, \theta, z)=(r \cos \theta, r \sin \theta, z) .
$$

Determine $\phi^{*} \omega$, with ω given by (1).

Assignment 2. (20 pt.)

Let M be the set of lines in \mathbb{R}^{2}.

1. Prove that M is a two-dimensional C^{∞}-manifold.
(Hint: construct parametrizations of the set L_{1} of non-vertical lines and the set L_{2} of non-horizontal lines.)
2. Prove that every translation on \mathbb{R}^{2} induces a C^{∞}-diffeomorphism on M.

Assignment 3. (25 pt .)
The 2 -vorm ω on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ is given by

$$
\omega=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)
$$

1. Prove that ω is closed.
2. Prove that $\int_{\mathbb{S}^{2}} \omega \neq 0$.

Hint: note that, on \mathbb{S}^{2}, the 2 -form ω is equal to the 2 -form η given by

$$
\eta=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y
$$

3. Prove that ω is not exact.

Assignment 4. (25 pt.)

Let M be a two-dimensional Riemannian manifold, and let $\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}\right\}$ be a moving frame on a subset V of M, with connection form ω_{12}.

1. At points of V the Gaussian curvature is given by

$$
K=F_{2}\left(\omega_{12}\left(F_{1}\right)\right)-F_{1}\left(\omega_{12}\left(F_{2}\right)\right)-\omega_{12}\left(F_{1}\right)^{2}-\omega_{12}\left(F_{2}\right)^{2}
$$

(Hint: express ω_{12} in terms of the coframe $\left\{\vartheta_{1}, \vartheta_{2}\right\}$. See also the hint at the end of this exercise.)
2. Prove that the Lie-bracket of F_{1} and F_{2} is given by

$$
\left[F_{1}, F_{2}\right]=-\omega_{12}\left(F_{1}\right) F_{1}-\omega_{12}\left(F_{2}\right) F_{2} .
$$

(Hint: you may want to determine $\vartheta_{1}\left(\left[F_{1}, F_{2}\right]\right)$ and $\vartheta_{2}\left(\left[F_{1}, F_{2}\right]\right)$ using the identities given at the end of this exercise.)
3. Let M be the upper half plane $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}>0\right\}$ endowed with the Riemannian metric $\langle\cdot, \cdot\rangle$, defined by

$$
\langle v, w\rangle=\frac{v \cdot w}{x_{2}^{2}}
$$

for $v, w \in \mathrm{~T}_{\left(x_{1}, x_{2}\right)} M$, where $v \cdot w$ is the standard inner product on \mathbb{R}^{2}. Let

$$
F_{1}=x_{2} \frac{\partial}{\partial x_{1}}, \quad F_{2}=x_{2} \frac{\partial}{\partial x_{2}}
$$

Use part 2 to determine the connection form of the moving frame $\left\{F_{1}, F_{2}\right\}$.
4. Prove that M has constant Gaussian curvature $K=-1$.

Hint: Recall the Levi-Civita equations

$$
\begin{aligned}
\mathrm{d} \vartheta_{1} & =\omega_{12} \wedge \vartheta_{2} \\
\mathrm{~d} \vartheta_{2} & =-\omega_{12} \wedge \vartheta_{1}
\end{aligned}
$$

You may also want to use the identity

$$
\sigma([X, Y])=X(\sigma(Y))-Y(\sigma(X))-\operatorname{d\sigma }(X, Y)
$$

for a one-form σ and vector fields X and Y.

Solutions

Assignment 1 ($7+6+7 \mathrm{pt}$.)

1. Use Poincaré's Lemma to show that ω is exact by proving that $d \omega=0$. This follows from a straightforward computation. The function f for which $\sigma=\mathrm{df}$ has to satisfy the equations

$$
\frac{\partial f}{\partial x}=y z, \quad \frac{\partial f}{\partial y}=x z, \quad \frac{\partial f}{\partial z}=x y .
$$

Take, e.g., $f(x, y, z)=x y z$.
2. Every 3-form on \mathbb{R}^{3} is closed. By Poincare's Lemma ω is exact. Note that $\omega=d\left(\frac{1}{2} x^{2} y z\right) \wedge d y \wedge d z$, so $\omega=d \eta$ for $\eta=\frac{1}{2} x^{2} y z \wedge d y \wedge d z$.
3.

$$
\begin{aligned}
\varphi^{*}(\omega) & =(x \circ \varphi)(y \circ \varphi)(z \circ \varphi) d(x \circ \varphi) \wedge d(y \circ \varphi) \wedge d(z \circ \varphi) \\
& =r^{3} z \cos \vartheta \sin \vartheta d r \wedge d \vartheta \wedge d z .
\end{aligned}
$$

Assignment 2 ($\mathbf{1 0 + 1 0} \mathbf{p t .)}$

1. Let $U_{i}=\mathbb{R}^{2}$, let $\mathrm{L}_{1} \subset M$ be the set of non-vertical lines, and let $\mathrm{L}_{2} \subset M$ be the set of non-horizontal lines in \mathbb{R}^{2}. Let $f_{1}: U_{1} \rightarrow M$ map the point $\left(u_{1}, u_{2}\right)$ to the line with equation $y=u_{1} x+u_{2}$, and let $f_{2}: U_{2} \rightarrow M$ map the point $\left(u_{1}, u_{2}\right)$ to the line with equation $x=u_{1} y+u_{2}$. Then f_{i} is a homeomorphism $\mathrm{U}_{i} \rightarrow \mathrm{~L}_{\mathrm{i}}$. Furthermore, $\mathrm{U}_{12}:=\mathrm{f}_{\mathrm{i}}^{-1}\left(\mathrm{~L}_{1} \cap \mathrm{~L}_{2}\right)=\left\{\left(\mathrm{u}_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid \mathrm{u}_{1} \neq 0\right\}$. The map $f_{2}^{-1} \circ f_{1}: U_{12} \rightarrow U_{12}$ is given by

$$
f_{2}^{-1} \circ f_{1}\left(u_{1}, u_{2}\right)=\left(\frac{1}{u_{1}},-\frac{u_{2}}{u_{1}}\right) .
$$

Since this map is smooth $\left(C^{\infty}\right)$, the charts $\left(U_{1}, f_{1}\right)$ and $\left(U_{2}, f_{2}\right)$ define a $C^{\infty}{ }_{-}$ structure on M.
2. Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the translation given by $\psi(x, y)=(x+a, y+b)$. Since ψ maps lines to lines in a 1-1 way, it induces a bijection on M. We prove that this bijection is differentiable at a point $l \in L_{1}$. Let $l=f_{1}\left(u_{1}, u_{2}\right)$, then $(x, y) \in \psi(l)$ iff $\psi^{-1}(x, y) \in l$, i.e., iff $y-b=u_{1}(x-a)+u_{2}$. Therefore, $\psi(l)$ is the line with equation $y=u_{1} x+u_{2}-u_{1} a+b$, i.e.,

$$
f_{1}^{-1} \circ \psi \circ f_{1}\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}-u_{1} b+a\right) .
$$

Since this map is differentiable, ψ is differentiable at all points of L_{1}. A similar argument shows that ψ is differentiable at all points of L_{2}, so ψ is differentiable on M. Sine ψ^{-1} is also a translation, we conclude that ψ is a diffeomorphism on M.

Assignment 3 ($8+9+8 \mathrm{pt}$).

1. A straightforward calculation shows that $\mathrm{d} \omega=0$.
2. Using the hint we derive

$$
\begin{aligned}
\int_{\mathbb{S}^{2}} \omega & =\int_{\partial \mathbb{B}^{3}} \eta \\
& =\int_{\mathbb{B}^{3}} d \eta \\
& =3 \int_{\mathbb{B}^{3}} d x \wedge d y \wedge d z \\
& =3 \text { Volume }\left(\mathbb{B}^{3}\right) \\
& =4 \pi \\
& \neq 0 .
\end{aligned}
$$

3. Assume ω is exact, say $\omega=d \sigma$ for a 1-form σ on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$. Then $\int_{\mathbb{S}^{2}} \omega=\int_{\mathbb{S}^{2}} d \sigma=\int_{\partial \mathbb{S}^{2}} \sigma=0$, because $\partial \mathbb{S}^{2}=\emptyset$.

Assignment 4 ($8+8+5+4$ pt.)

1. Let $\omega_{12}=f_{1} \vartheta_{1}+f_{2} \vartheta_{2}$, i.e., let $f_{i}=\omega_{12}\left(F_{i}\right)$. Then

$$
\begin{equation*}
d \omega_{12}=d f_{1} \wedge \vartheta_{1}+f_{1} d \vartheta_{1}+d f_{2} \wedge \vartheta_{2}+f_{2} d \vartheta_{2} . \tag{2}
\end{equation*}
$$

Using the Levi-Civita equations we get

$$
\begin{aligned}
& \mathrm{d} \vartheta_{1}=\mathrm{f}_{1} \vartheta_{1} \wedge \vartheta_{2}, \\
& \mathrm{~d} \vartheta_{2}=\mathrm{f}_{2} \vartheta_{1} \wedge \vartheta_{2} .
\end{aligned}
$$

Furthermore,

$$
d f_{i}=d f_{i}\left(F_{1}\right) \vartheta_{1}+d f_{i}\left(F_{2}\right) \vartheta_{2}=F_{1}\left(f_{i}\right) \vartheta_{i}+F_{2}\left(f_{i}\right) \vartheta_{2} .
$$

Substituting the expressions for $d \vartheta_{1}, d \vartheta_{2}$ and $d f_{i}$ into (2), we get

$$
d \omega_{12}=\left(-F_{2}\left(f_{1}\right)+f_{1}^{2}+F_{1}\left(f_{2}\right)+f_{2}^{2}\right) \vartheta_{1} \wedge \vartheta_{2} .
$$

Since K is uniquely determined by $d \omega_{12}=-K \vartheta_{1} \wedge \vartheta_{2}$, we obtain the requested expression for K .
2. We have to prove that $\vartheta_{i}\left(\left[F_{1}, F_{2}\right]\right)=-\omega_{12}\left(F_{i}\right)$. Using the identity at the end of the assignment with $\sigma=\vartheta_{i}, X=F_{1}$ and $Y=F_{2}$, we get

$$
\begin{aligned}
\vartheta_{i}\left(\left[F_{1}, F_{2}\right]\right) & =-d \vartheta_{i}\left(F_{1}, F_{2}\right)+F_{1}\left(\vartheta_{i}\left(F_{2}\right)\right)-F_{2}\left(\vartheta_{i}\left(F_{1}\right)\right) \\
& =-d \vartheta_{i}\left(F_{1}, F_{2}\right)+F_{1}\left(\delta_{i 2}\right)-F_{2}\left(\delta_{i 1}\right) \\
& =-d \vartheta_{i}\left(F_{1}, F_{2}\right) .
\end{aligned}
$$

Since $d \vartheta_{1}\left(F_{1}, F_{2}\right)=\left(\omega_{12} \wedge \vartheta_{i}\right)\left(F_{1}, F_{2}\right)=\omega_{12}\left(F_{1}\right)$, we see that $\vartheta_{1}\left(\left[F_{1}, F_{2}\right]\right)=$ $-\omega_{12}\left(\mathrm{~F}_{1}\right)$. In a similar way we show that $\vartheta_{2}\left(\left[\mathrm{~F}_{1}, \mathrm{~F}_{2}\right]\right)=-\omega_{12}\left(\mathrm{~F}_{2}\right)$.
3. A straightforward computation shows that $\left[F_{1}, F_{2}\right]=-F_{1}$:

$$
\left[F_{1}, F_{2}\right](f)=x_{2} \frac{\partial}{\partial x_{1}}\left(x_{2} \frac{\partial f}{\partial x_{2}}\right)-x_{2} \frac{\partial}{\partial x_{2}}\left(x_{2} \frac{\partial f}{\partial x_{1}}\right)=-x_{2} \frac{\partial f}{\partial x_{1}}=-F_{1}(f) .
$$

Therefore, $\omega_{12}\left(F_{1}\right)=1$ and $\omega_{12}\left(F_{2}\right)=0$, so $\omega_{12}=\vartheta_{1}$.
4. Using the result of part 3 we get $K=F_{2}(1)-F_{1}(0)-1^{2}-0^{2}=-1$.

